INTERNAL ASSIGNMENT QUESTIONS M.Sc. (Mathematics) SEMESTER II

2025

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION

(RECOGNISED BY THE DISTANCE EDUCATION BUREAU, UGC, NEW DELHI)

OSMANIA UNIVERSITY

(A University with Potential for Excellence and Re-Accredited by NAAC with "A" + Grade)

un book

DIRECTOR Prof. N.Ch. Bhatracharyulu Hyderabad – 7 Telangana State

PROF.G.RAM REDDY CENTRE FOR DISTANCE EDUCATION OSMANIA UNIVERSITY, HYDERABAD – 500 007

Dear Students,

Every student of M.Sc. Mathematics II Semester has to write and submit Assignment for each paper compulsorily. Each assignment carries 30 marks. The marks awarded to the students will be forwarded to the Examination Branch, OU for inclusion in the marks memo. If the student fail to submit Internal Assignments before the stipulated date, the internal marks will not be added in the final marks memo under any circumstances. The assignments will not be accepted after the stipulated date. Candidates should submit assignments fee only remaining Examination fee pay to Examination Branch, OU, after notification separately to be issued.

Candidates are required to submit the Assignment fee receipt of Rs.500/- along with the assignment answers scripts at the concerned counter on or before **31.12.2025** and obtain proper submission receipt.

Assignments on Printed / Photocopy / Typed will not be accepted and will not be valued at any cost.

HAND WRITTEN ASSIGNMENTS will be accepted and valued.

Students are advised to use Blue Pen only.

Methodology for writing the Assignments (Instructions):

- 1. First read the subject matter in the course material that is supplied to you.
- 2. If possible read the subject matter in the books suggested for further reading.
- 3. You are welcome to use the PGRRCDE Library on all working days for collecting information on the topic of your assignments. (10.30 am to 5.00 pm).
- 4. Give a final reading to the answer you have written and see whether you can delete unimportant or repetitive words.
- 5. The cover page of the each theory assignments must have information as given in FORMAT below.

FORMAT

1. NAME OF THE STUDENT :

2. ENROLLMENT NUMBER

3. NAME OF THE COURSE :

4. NAME OF THE PAPER :

5. DATE OF SUBMISSION

- 6. Write the above said details clearly on every subject assignments paper, otherwise your paper will not be valued.
- 7. Tag all the assignments paper wise and submit them in the concerned counter.
- 8. Submit the assignments on or before <u>31.12.2025</u> at the concerned counter at PGRRCDE, OU on any working day and obtain receipt.

DIRECTOR

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION

OSMANIA UNIVERSITY, HYDERABAD - 500 007

INTERNAL ASSIGNMENT QUESTION PAPER COURSE: M. Sc., (MATHEMATICS) – II - Semester

Paper: I

Subject: Galois Theory

Section - A

UNIT – I: Answer the following short questions (each question carries two marks) $(5 \times 2 = 10M)$

- 1. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in Z[x], n \ge 1$. If there is a prime 'p' such that $p^2 \nmid a_0, p \mid a_0, p \mid a_1 \dots p \mid a_{n-1}, p \nmid a_n$ then prove that f(x) is irreducible over Q.
- 2. If the multiplicative group F^* of nonzero elements of a field F is cyclic then prove that F is finite.
- 3. Prove that the Galois group of $x^4 + 1 \in Q[x]$ is the Klein four group.
- 4. Let f(x) be a polynomial over a field F with no multiple roots. Then prove that f(x) is irreducible over F if and only if the Galois group G of f(x) is isomorphic to a transitive permutation group.
- 5. Express the symmetric functions $x_1^2 + x_2^2 + x_3^2$ as rational functions of the elementary symmetric functions.

Section - B

UNIT – II: Answer the following questions (each question carries five marks)

(2X10 = 20M)

- 1. Let E be a finite extension of a field F. Then prove that the following are equivalent (a) $E = F(\alpha)$ for some $\alpha \in E$. (b) There are only a finite number of intermediate fields between F and E.
- 2. Let F contains a primitive nth root ω of unity. Then the prove that the following are equivalent
 - (i) E is a finite cyclic extension of degree n over F.
 - (ii) E is the splitting field of an irreducible polynomial $x^n b \in F[x]$. Furthermore $E = F(\alpha)$, where α is a root of $x^n b$.

Name of the Faculty: **Prof.** G. Upender Reddy Dept. Mathematics

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION

OSMANIA UNIVERSITY, HYDERABAD-500 007

INTERNAL ASSIGNMENT QUESTION PAPER

COURSE:	M.Sc.	(Mathematics)	II Semeste	r
		· 1 (Mariana	and I trogation

____ Subject: Lebelque Measure a , Paper: 4

Total Marks: 30

Section - A

UNIT – I: Answer the following short questions (each question carries two marks) 5x2=10

1 Give an example of Algebra but not à T-algebra.

2 If A = B = R, then Show that m*(A) < m*(B)

3 Show that every monotonic increasing furthon is of bounded

4. State and prime Fatoris lemma

5 Show that every absolutely continuous function is uniformly continuous

Section - B

UNIT - II: Answer the following Questions (each question carries ten marks)

1 Show that there exists a bounded non measurable set of R.

2. State and prove Lebesgue convergence theorem

 $\sqrt{\frac{5}{10}}$ Name of the Faculty:

Dept. of Mathematics

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION OSMANIA UNIVERSITY, HYDERABAD-500 007

INTERNAL ASSIGNMENT QUESTION PAPER

COURSE: M.Sc. (Mathematics) II Semester

, Paper: _____ Subject: ____ Complex Analysis__

Total Marks: 30

Section - A

UNIT – I: Answer the following short questions (each question carries two marks) 5x2=10

1 4(x, y) is harmonic in some domain Find Conjugate when

2 Evaluate $\int \frac{\sinh z}{z^2(z-2)} dz$ 12 = 1 $z^2(z-2)$ 3 : C'+ve oriented boundary of square lies $x = y = \pm 2$, Evaluate

4. Integal $\int \frac{\cos z}{z(z^2+8)} dz$ 5 obtain the taylor series Exponentian of $f(z) = \frac{1}{(z-1)(z-2)}$ Y Evaluate $\int \frac{1}{x^6+1} dx$.

Section - B

UNIT – II: Answer the following Questions (each question carries ten marks)

2x10=20

1 State and prove milne-Thornson method & Find analyatic

function of f(z) when u(x, y) = x4-6x2y + y .

2.

i) if f(z) = \frac{23}{2^2-1} at z=\infty \text{Find residue}.

ii) Evalue \(\frac{\infty}{(x^2+\infty)} \text{Name of the Faculty: Dr E. SRINIVAS}

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION

OSMANIA UNIVERSITY, HYDERABAD-500 007

COURSE: M.Sc. (Mathematics) II Semester

INTERNAL ASSIGNMENT QUESTION PAPER

Paper: V Subject: Intogral Rous & Calculus &	
Paper: IV Subject: Tritogral Equis & Calculus & Variations. COV.	
Total Marks: 30	ļ
Section – A	
UNIT – I : Answer the following short questions (each question carries two marks) 5x2=10	
1 Defens i) Dymnotric kornol ii) Degenorate kornel in Storated ko	mel,
2 Police The Entegral Eqn: \$(N) = ex- sex-t p(t) at-	
3 Find 500 + 3/2 (1-0t) dt	
4. Find resolvent kornel - fit the knowned K(x1t) - sin (x-2t)	
\mathcal{C}	£27
5 State and place Fundamental Louwa of Calculous of Variation.	
Section – B	
UNIT – II : Answer the following Questions (each question carries ten marks) 2x10=20	
1 Find the Grain's functions for dy = 0 with 4(0) = 4(1) = 4(1) = 4(1)	IJ=O
2. Derive i) Hamilton's Minciple. ii) Hamilton's Equation of Motion.	
ii) themiston's Equation of Motion.	
Name of the Faculty: Dept. Matthewatics	ш
Dans Mathewatics	rder
Dept	